Органы чувств костистых рыб.

Глаз — совершенный оптический прибор. Он напоминает фотографический аппарат. Хрусталик глаза подобен объективу, а сетчатка — пленке, на которой получается изображение. У наземных животных хрусталик чечевицеоб-разный и может изменять свою кривизну, что дает возможность приспосабливать зрение к расстоянию. У рыб хрусталик глаза более выпуклый, почти шарообразный, и не может менять форму. И все же в какой-то степени рыбы приспосабливают зрение к расстоянию. Они достигают этого посредством приближения или удаления хрусталика от сетчатки с помощью особых мышц.

В прозрачной воде рыба практически может видеть не далее чем на 10—12 м, обычно же четко различает предметы в пределах 1,5 м.

Рыбы обладают большим углом зрения. Не поворачивая тела, они могут видеть предметы каждым глазом по вертикали в зоне около 150° и по горизонтали до 170° (рис. 87). Объясняется это расположением глаз по обеим сторонам головы и положением хрусталика, сдвинутого к самой роговице.

Совершенно необычным должен казаться рыбе надводный мир. Без искажения рыба видит лишь предметы, находящиеся прямо над ее головой — в зените. Например, облако или парящую чайку. Но чем меньше угол входа светового луча в воду и чем ниже расположен надводный предмет, тем более искаженным кажется он рыбе.

Рыбы отлично различают цвета и даже их оттенки.

Попробуйте опустить в аквариум несколько разноцветных чашечек, но корм положите только в одну из них. Продолжайте ежедневно давать корм в чашечке одного и того же цвета. Вскоре рыбы станут устремляться к чашечке только того цвета, в которой вы обычно давали им пищу; они найдут чашечку даже в том случае, если вы поставите ее в другое место.

Или другой опыт: одну сторону аквариума закрывают картоном, оставляя посередине узкую вертикальную щель. У противоположной стороны его помещают белую палочку, а в щель пропускают лучи, окрашивающие палочку в тот или иной цвет. Корм рыбам дают при определенном цвете. Через некоторое время рыбы начинают собираться к палочке, как только она окрашивается в «пищевой» цвет. Эти опыты показали, что рыбы воспринимают не только цвет, но и отдельные его оттенки не хуже человека. Караси, например, различают лимонный, желтый и оранжевый. То, что рыбы обладают цветовым зрением, подтверждается и их защитной и брачной окраской — ведь иначе она была бы просто бесполезной. Рыболовы-спортсмены хорошо знают, что для успешной ловли имеет важное значение цвет применяемых блесен.

Способность различать цвета у различных рыб неодинакова. Лучше всего различают цвета рыбы, обитающие в верхних слоях воды, где много света. Хуже те, которые живут на глубине, куда проникает только часть световых лучей.

Рыбы по-разному относятся к искусственному свету. Одних он привлекает, других отпугивает.

Почему рыбы идут на свет, окончательно не установлено. Согласно одной теории, в море, в местах, лучше освещенных солнцем, рыбы находят больше пищи. Здесь бурно развивается растительный планктон, скапливается множество мелких ракообразных. И у рыб выработалась положительная реакция на свет, который стал для них сигналом «пищи». Эта теория не объясняет, почему же устремляются на свет рыбы, поедающие моллюсков. Не объясняет она также, почему рыбы, попав в освещенную зону и не найдя нищи, задерживаются в ней, а не уплывают сразу.

По другой теории, рыб влечет к свету «любопытство». Согласно учению И. П. Павлова, животным свойствен рефлекс — «Что такое?». Электрический свет необычен под водой, и, заметив его, рыбы подплывают ближе. В дальнейшем вблизи источника света у различных рыб в зависимости от образа их жизни возникают самые разнообразные рефлексы. Если возникает оборонительный рефлекс, — рыбы немедленно уплывают, если же стайный или пищевой, — рыбы надолго задерживаются на освещенном участке.

(http://www.urhu.ru/fishing/ryby)

Светочувствительные клетки располагаются со стороны пигментной оболочки. В их отростках, имеющих форму палочек и колбочек, имеется светочувствительный пигмент. Количество этих фоторецепторных клеток очень велико: на 1 мм 2 сетчатки у карпа их насчитывается 50 тыс. шт., у кальмара-162 тыс. шт., паука-16, человека-400 тыс. шт. Посредством сложной системы контактов конечных разветвлений чувствующих клеток и дендритов нервных клеток световые раздражения поступают в зрительный нерв.Колбочки при ярком свете воспринимают детали предметов и цвет: они улавливают длинные волны спектра. Палочки воспринимают слабый свет, но детального изображения создать не могут: воспринимая короткие волны, они примерно в 1000 раз чувствительнее колбочек.Положение и взаимодействие клеток пигментной оболочки, палочек и колбочек меняется в зависимости от освещенности. На свету пигментные клетки расширяются и прикрывают находящиеся около них палочки; колбочки подтягиваются к ядрам клеток и таким образом передвигаются к свету. В темноте к ядрам подтягиваются палочки и оказываются ближе к поверхности; колбочки приближаются к пигментному слою, а сократившиеся в темноте пигментные клетки прикрывают их.Количество рецепторов разного рода зависит от образа жизни рыб. У дневных рыб в сетчатке превалируют колбочки, у сумеречных и ночных-палочки: у налима палочек в 14 раз больше, чем у щуки. У глубоководных рыб, живущих в темноте глубин, колбочек нет, а палочки становятся больше и количество их резко увеличивается-до 25 млн на 1 мм 2 сетчатки; вероятность улавливания даже слабого света возрастает. Большая часть рыб различает цвета. Некоторые особенности в строении глаз рыб связаны с особенностями жизни в воде. Они эллипсовидной формы и имеют серебристую оболочку между сосудистой и белковой, богатую кристалликами гуанина, что придает глазу зеленовато-золотистый блеск. Роговица урыб почти плоская (а не выпуклая), хрусталик шаровидный (а не двояковыпуклый)-это расширяет поле зрения. Отверстие.в радужной оболочке (зрачок) может изменять диаметр только в небольших пределах. Век у рыб, как правило, нет. Лишь акулы имеют мигательную перепонку, закрывающую глаз, как занавеска, и некоторые сельди и кефали имеют жировое веко-прозрачную пленку, закрывающую часть глаза.Расположение глаз у большинства видов по бокам головы является причиной того, что рыбы обладают в основном монокулярным зрением, а способность к бинокулярному зрению ограничена. Шаровидность хрусталика и перемещение его вперед к роговице обеспечивает широту поля зрения: свет в глаз попадает со всех сторон. Угол зрения по вертикали составляет 150°, по горизонтали-168...170°. Но вместе с тем шаровидность хрусталика обусловливает близорукость рыб. Дальность их зрения ограничена и колеблется в связи с мутностью воды от нескольких сантиметров до нескольких десятков метров. Видение на дальние расстояния становится возможным благодаря тому, что хрусталик может быть оттянут специальной мышцей-серповидным отростком, идущим от сосудистой оболочки дна глазного бокала, а не за счет изменения кривизны хрусталика, как у млекопитающих.При помощи зрения рыбы ориентируются и относительно предметов, находящихся на земле.Улучшение зрения в темноте достигается наличием отражательного слоя (тапетум) -кристалликов гуанина, подстилаемых пигментом. Этот слой т пропускает свет к лежащим позади сетчатки тканям, а отражает его и возвращает вторичнона сетчатку. Так увеличивается возможность рецепторов использовать свет, попавший в глаз.В связи с условиями обитания глаза рыб могут сильно видоизменяться. У пещерных или абиссальных (глубоководных) форм глаза могут редуцироваться и даже исчезать. Некоторые же глубоководные рыбы, наоборот, имеют огромные глаза, позволяющие улавливать совсем слабый свет, или телескопические глаза, собирающие линзы которых рыба может поставить параллельно и обрести бинокулярное зрение. Глаза некоторых угрей и личинок тропических рыб вынесены вперед на длинных выростах (стебельчатые глаза). Необычна модификация глаз у четырехглазки, обитающей в водах Центральной и Южной Америки. Ее глаза помещаются на верху головы, каждый из них разделен перегородкой на две самостоятельные части:верхней рыба видит в воздухе, нижней-в воде. В воздушной среде могут функционировать глаза рыб, выползающих на сушу.Кроме глаз воспринимают свет эпифиз (железа внутренней секреции) и светочувствительные клетки, расположенные в хвостовой части, например,у миног.Роль зрения как источника информации для большинства рыб велика: при ориентации во время движения, отыскивании » захвате пищи, сохранении стаи, в нерестовый период (восприятие оборонительных и агрессивных поз и движений самцами-соперниками, а между особями разных полов"-брачного наряда и нерестового «церемониала»), в отношениях жертва-хищник и т. д. Карп видит при освещенности 0,0001 лк, карась-0,01 лк.Способность рыб воспринимать свет издавна использовалась в рыболовстве: лов рыбы на свет.Известно, что рыбы разных видов неодинаково реагируют на свет разной интенсивности и разной длины волны, т. е. разного цвета. Так, яркий искусственный свет привлекает одних рыб (каспийская килька, сайра, ставрида, скумбрия) и отпугивает других (кефаль, минога, угорь). Так же избирательно относятся разные виды к разным цветам и разным источникам света-надводным и подводным. Все это положено в основу организации промышленного лова рыбы на электросвет. Так ловят кильку, сайру и других рыб.Орган слуха и равновесия рыб. Он расположен в задней части черепной коробки и представлен лабиринтом. Ушных отверстий, ушной раковины и улитки нет, т. е. орган слуха представлен внутренним ухом.Наибольшей сложности достигает он у настоящих рыб:большой перепончатый лабиринт помещается в хрящевой или костной камере под прикрытием ушных костей. В нем различают верхнюю часть - овальный мешочек (ушко, utriculus) и нижнюю-круглый мешочек (sacculus). От верхней. части во взаимно перпендикулярных направлениях отходят три полукружных канала, каждый из которых на одном конце расширен в ампулу

Овальный мешочек с полукружными каналами составляет орган равновесия (вестибулярный аппарат). Боковое расширение нижней части круглого мешочка (lagena), являющегося зачатком улитки, не получает у рыб дальнейшего развития. От круглого мешочка отходит внутренний лимфатический (эндолимфатический) канал, который у акул и скатов через специальное отверстие в черепе выходит наружу, а у остальных рыб слепо заканчивается у кожи головы.Эпителий, выстилающий отделы лабиринта, имеет чувствующие клетки с волосками, отходящими во внутреннюю полость. Основания их оплетены разветвлениями слухового нерва.Полость лабиринта заполнена эндолимфой, в ней находятся «слуховые» камешки, состоящие из углекислой извести (отолиты), по три с каждой стороны головы: в овальном и круглом мешочках и лагене. На отолитах, как и на чешуе, образуются концентрические слои, поэтому отолиты, особенно наибольший,-часто используют для определения возраста рыб, а иногда и для систематических определений, так как их размеры и контуры неодинаковы у различных видов.У большинства рыб наибольший отолит располагается в круглом мешочке, но у карповых и некоторых других-в лагене.С лабиринтом связано чувство равновесия: при передвижении рыбы давление эндолимфы в полукружных каналах, а также со стороны отолита изменяется, и возникшее раздражение улавливается нервными окончаниями. При экспериментальном разрушении верхней части лабиринта с полукружными каналами рыба теряет способность удерживать равновесие и лежит на боку, спине или брюхе. Разрушение нижней части лабиринта не ведет к утрате равновесия.С нижней частью лабиринта связано восприятие звуков: при удалении нижней части лабиринта с круглым мешочком и лаге-ной рыбы не могут различать звуковые тона, например, при выработке условных рефлексов. Рыбы без овального мешочка и полукружных каналов, т. е. без верхней части лабиринта, дрессировке поддаются. Таким образом, установлено, что рецепторами звука являются именно круглый мешочек и лагена.Рыбы воспринимают как механические, так и звуковые колебания частотой от 5 до 25 Гц органами боковой линии, от 16 до 13000 Гц:-лабиринтом. Некоторые виды рыб улавливают колебания, находящиеся на границе инфразвуковых волн, боковой линией, лабиринтом и кожными рецепторами.Острота слуха у рыб меньше, чем у высших позвоночных, и у разных.видов неодинакова: язь воспринимает колебания, длина волны которых составляет 25. ..5524 Гц, серебряный карась-25...3840, угорь-36...650 Гц, причем низкие звуки улавливаются ими лучше. Акулы слышат звуки, издаваемые рыбами на расстоянии 500 м.Рыбы улавливают и те звуки, источник которых находится не в воде, а в атмосфере, несмотря на то, что такой звук на 99,9% отражается поверхностью воды и, следовательно, в воду проникает только 0,1% образующихся звуковых волн.В восприятии звука у карповых и сомовых рыб большую роль играет плавательный пузырь, соединенный с лабиринтом и служащий резонатором.Рыбы могут и сами издавать звуки. Звукоиздающие органы у рыб различны. Это плавательный пузырь (горбыли, губаны и др.), лучи грудных плавников в комбинации с костями плечевого пояса (сомы), челюстные и глоточные зубы (окуневые и карповые) и др. В связи с этим неодинаков и характер звуков. Они могут напоминать удары, цоканье, свист, ворчанье, хрюканье, писк, кваканье, рычание, треск, рокот, звон, хрип, гудок, крики птиц и стрекотание насекомых.Сила и частота звуков, издаваемых рыбами одного вида, зависит от пола, возраста, пищевой активности, здоровья, причиняемой боли и др.Звучание и восприятие звуков имеет большое значение в жизнедеятельности рыб. Оно помогает особям разного пола найти друг друга, сохранить стаю, сообщить сородичам о присутствии пищи, охранять территорию, гнездо и потомство от врагов, является стимулятором созревания во время брачных игр, т. е. служит важным средством общения. Предполагают, что у глубоководных рыб, рассредоточенных в темноте на океанических глубинах, именно слух в сочетании с органами боковой линии и обонянием обеспечивает общение, тем более, что звукопроводимость, более высокая в воде, чем в воздухе, на глубине возрастает. Особенно важен слух для ночных рыб и обитателей мутных вод.Реакция разных рыб на посторонние звуки различна: при шуме одни уходят в сторону, другие (толстолобик, семга, кефаль) выпрыгивают из воды. Это используют при организации лова. В рыбоводных хозяйствах, в период нереста, движение транспорта около нерестовых прудов запрещено.

Железы внутренней секреции

Железами внутренней секреции являются гипофиз, эпифиз, надпочечники, поджелудочная, щитовидная и ультимобронхиальная (подпищеводная) железы, а также урогипофиз и гонады, Они выделяют гормоны в кровь.Гипофиз-непарное, неправильной овальной формы образование, отходящее от нижней стороны промежуточного мозга (гипоталамуса). Очертание, размеры и положение его чрезвычайно разнообразны. У сазана, карпа и многих других рыб гипофиз сердцевидной формы, лежит почти перпендикулярно мозгу. У серебряного карася он вытянут, немного сплющен с боков и лежит параллельно мозгу.В гипофизе различают два основных отдела различного происхождения: мозговой (нейрогипофиз), составляющий внутреннюю часть железы, который развивается из нижней стенки промежуточного мозга как впячивание дна третьего мозгового желудочка, и железистый (аденогипофиз), образующийся из впячивания верхней стенки глотки. В аденогипофизе выделяют три части (лопасти, доли): главную (переднюю, расположенную на периферии), переходную (наибольшую) и промежуточную (рис. 34). Аденогипофиз является центральной железой эндокринной системы. В железистой паренхиме его долей вырабатывается секрет, содержащий ряд гормонов, стимулирующих рост (соматический гормон необходим для роста костей), регулирующих функции половых желез и таким образом воздействующих на половое созревание, влияющих на деятельность пигментных клеток (определяют окраску тела и прежде всего появление брачного наряда) и повышающих устойчивость рыб к высокой температуре, стимулирует синтез белка, работу щитовидной железы, участвует в осморегуляции. Удаление гипофиза влечет за собой остановку роста и созревания.Гормоны, выделяемые нейрогипофизом, синтезируются в ядрах гипоталамуса и переносятся по нервным волокнам в нейрогипофиз, а затем попадают в пронизывающие его капилляры, Таким образом, это нейтросекреторная железа. Гормоны принимают участие в осморегуляции, вызывают нерестовые реакции.Единую систему с гипофизом образует гипоталамус, клетки которого выделяют секрет, регулирующий гормонообразующую деятельность гипофиза, а также водно-солевой обмен и др.Наиболее интенсивное развитие гипофиза приходится на период превращения личинки в малька, У половозрелых рыб активность его неравномерна в связи с биологией размножения рыб и, в частности, с характером икрометания. У единовременно икромечущих рыб секрет в железистых клетках накапливается почти одновременно "после выведения секрета, к моменту овуляции гипофиз опустошается, и в секреторной деятельности его наступает перерыв, В яичниках к моменту нереста заканчивается развитие овоцитов, подготовляемых к вымету в данный сезон. Овоциты выметываются в один прием и составляют таким образом единственную генерацию,У порционно икромечущих рыб секрет в клетках образуется неодновременно. Вследствие этого после вывода секрета во время первого нереста остается часть клеток, в которых процесс образования коллоида не закончился. В результате он может выделяться порциями на протяжении всего нерестового периода. В свою очередь, овоциты, подготавливаемые к вымету в данный сезон, развиваются также асинхронно. К моменту первого нереста в яичниках содержатся не только созревшие овоциты, но и те, развитие которых еще не завершено. Такие овоциты созревают через некоторое время после выведения первой генерации овоцитов, т. е. первой порции икры. Так образуется несколько порций икры.Исследование путей стимуляции созревания рыб привели почти одновременно в первой половине нашего века, но независимо друг от друга бразильских (Иеринг и Кардозо, 1934- 1935) и советских ученых (Гербильский и его школа, 1932- 1934) к разработке метода гипофизарных инъекций производителям для ускорения их созревания. Этот метод позволил в значительной мере управлять процессом созревания рыб и тем самым увеличивать размах рыбоводных работ по воспроизводству ценных видов. Гипофизарные инъекции широко применяют при искусственном разведении осетровых и карповых рыб.Третий нейросекреторный отдел промежуточного мозга - эпифиз. Его гормоны (серотин, мелатонин, адреногломеруло-тропин) участвуют в сезонных перестройках обмена веществ. На его активность влияют освещенность и продолжительность светового дня: при их увеличении повышается активность рыб, ускоряется рост, изменяются гонады и др.Щитовидная железа расположена в области глотки, около брюшной аорты. У одних рыб (некоторые акулы, лососевые) она является плотным парным образованием, состоящим из фолликулов, выделяющих гормоны, у других (окуневые, карповые) железистые клетки не образуют оформленного органа, а лежат диффузно в соединительной ткани.Секреторная деятельность щитовидной железы начинается очень рано. Например, у личинок осетра на 2-й день после выклева железа, хотя и не вполне сформированная, проявляет активную секреторную деятельность, а на 15-й день формирование фолликулов почти заканчивается. Содержащие коллоид фолликулы обнаруживаются у 4-дневных личинок севрюги.В дальнейшем железа периодически выделяет скапливаюшийся секрет, причем усиление ее деятельности отмечается у молоди во время метаморфоза, а у половозрелых рыб-в преднерестовый период, до появления брачного наряда. Максимум активности совпадает с моментом овуляции.Активность щитовидной железы меняется в течение жизни, постепенно падая в процессе старения, а также в зависимости от обеспеченности рыб пищей: недокорм вызывает усиление функции.У самок щитовидная железа развита сильнее, чем у самцов, однако у самцов она более активна.Щитовидной железе принадлежит важная роль в регуляции обмена веществ, процессов роста и дифференцировки, углеводного обмена, осморегуляции, поддержании нормальной деятельности нервных центров, коры надпочечников, половых желез. Добавление препарата щитовидной железы в корм ускоряет развитие молоди. При нарушении функции щитовидной железы появляется зоб.Половые железы-яичники и семенники выделяют половые гормоны. Секреция их периодична: наибольшее количество гормонов образуется в период зрелости гонад. С этими гормонами связывают появление брачного наряда.В яичниках акул и речного угря, а также в плазме крови акул обнаружены гормоны 17^-эстрадиол и эстерон, локализующиеся преимущественно в яйцеклетках, меньше - в ткани яичника. У самцов акул и лосося обнаружены дезоксикортикостерон и прогестерон.У рыб существует зависимость между гипофизом, щитовидной железой и гонадами. В преднерестовый и нерестовый периоды созревание гонад направляется активностью гипофиза и щитовидной железы, а деятельность этих желез тоже взаимосвязана.Поджелудочная железа у костистых рыб выполняет двойную функцию-железы внешней (выделение ферментов) и внутренней (выделение инсулина) секреции.Образование инсулина локализовано в островках Лангерганса, вкрапленных в ткань печени. Он играет важную роль в регуляции углеводного обмена и синтеза белков.Ультимобранхиальные (супраперибранхи-альные, или подпищеводные) железы обнаружены как у морских, так и пресноводных рыб. Это парные или непарные образования, лежащие, например у щук и лососевых, по бокам пищевода. Клетки желез секретируют гормон кальцитонин, который препятствует резорбции из костей кальция и таким образом не дает повышаться его концентрации в крови.Надпочечники. В отличие от высших животных у рыб мозговое и корковое вещество разобщено и не образует единого органа. У костистых рыб они располагаются в разных участках почки. Корковое вещество (соответствующее кортикальной ткани высших позвоночных) внедрено в переднюю часть почки и носит название интерреналовой ткани. В нем обнаружены те же вещества, что и у других позвоночных, но содержание, например, липидов, фосфолипидов, холестерина, аскорбиновой кислоты у рыб больше.Гормоны коркового слоя оказывают многостороннее влияние на жизнедеятельность организма. Так, глюкокортикоиды (у рыб обнаружены кортизол, кортизон, 11-дезоксикортизол) и половые гормоны принимают участие в развит!!и скелета, мышц, половом поведении, углеводном обмене. Изъятие интерреналовой ткани ведет к остановке дыхания еще до остановки сердца. Кортизол участвует в осморегуляцин.Мозговому веществу надпочечников у высших животных у рыб соответствует хромаффинная ткань, отдельные клетки которой разбросаны и ткани почек. Выделяемый ими гормон адреналин воздействует на сосудистую и мышечную системы, увеличивает возбудимость и силу пульсации сердца, вызывает расширение и сужение сосудов. Увеличение концентрации адреналина в крови вызывает чувство тревоги.Нейросекреторным и эндокринным органом у костистых рыб является и урогипофиз, находящийся в каудальной области спинного мозга и участвующий в осморегуляции, оказывающий большое влияние на работу почек.

Ядоносность и ядовитость рыб

Ядоносные рыбы имеют ядоносный аппарат, состоящий из шипов и ядовитых желез, расположенных у основания этих шипов (Mvoxocephalus scorpius в период икрометания) или в их желобках шипов и желобках плавниковых лучей (Scorpaena, Frachinus, Amiurus, Sebastes и др.).

Сила действия ядов различна: от образования в месте укола нарыва до расстройства дыхания и сердечной деятельности и смерти (в тяжелых случаях поражения Trachurus). В наших морях ядоносными являются морской дракончик (скорпион), звездочет (морская корова), морской ерш (скорпена), скат-хвостокол, морской кот, колючая акула катран), керчак, морской окунь, ерш-носарь, ауха (китайский ерш), морская мышь (лира), высоколучевой окунь.

При употреблении в пищу эти рыбы безвредны.

Рыбы, ткани и органы которых ядовиты по химическому составу, относятся к ядовитым и употребляться в пищу не должны. Они особенно многочисленны в тропиках. У акулы Carcharinus glaucus ядовита печень, у скалозуба Tetradon-яичники и икра. В нашей фауне у маринки Schizothorax и османа Diptychus ядовиты икра и брюшина, у усача Barbus и храмули Varicorhynus икра оказывает слабительное действие. Яд ядовитых рыб действует на дыхательные и вазомоторные центры, не разрушается при кипячении. У некоторых рыб ядовита кровь (угри Muraena, Anguilla, Conger, минога, линь, тунец, карп и др.). Ядовитые свойства проявляются при инъекции кровяной сыворотки этих рыб; они пропадают при нагревании, под действием кислот и щелочей.

Отравления несвежей рыбой связаны с появлением в ней ядовитых продуктов жизнедеятельности гнилостных бактерий. Специфический же “рыбий яд” образуется в доброкачественной рыбе (преимущественно в осетровых и белорыбице) как продукт жизнедеятельности анаэробных бактерий Bacillus ichthyismi, близкой к В. botulinus. Действие яда проявляется при употреблении сырой, в том числе соленой рыбы.

Глаз - совершенный оптический прибор. Он напоминает фотографический аппарат. Хрусталик глаза подобен объективу, а сетчатка - пленке, на которой получается изображение. У наземных животных хрусталик чечевицеобразный и может изменять свою кривизну. Это дает возможность приспосабливать зрение к расстоянию.

Под водой человек видит очень плохо. Способность преломлять световые лучи у воды и хрусталика глаза наземных животных почти одинакова, поэтому лучи собираются в фокусе далеко позади сетчатой оболочки. На самой же сетчатке получается неясное размытое изображение.

Хрусталик глаза у рыб шарообразен, он лучше преломляет лучи, но не может менять форму. И все же в какой-то степени рыбы могут приспосабливать зрение к расстоянию. Они достигают этого приближением или удалением хрусталика от сетчатой оболочки с помощью особых мышц.

Практически рыба в прозрачной воде видит не далее чем на 10-12 метров, а ясно - только в пределах полутора метров.

Угол зрения у рыб очень велик. Не поворачивая тела, они могут видеть предметы каждым глазом по вертикали в зоне около 150° и по горизонтали до 170°. Объясняется это расположением глаз по обеим сторонам головы и положением хрусталика, сдвинутого к самой роговице.

Совершенно необычным должен казаться рыбе над водный мир. Без искажения рыба видит лишь предметы, находящиеся прямо над ее головой - в зените. Например, облако или парящую чайку. Но чем острее угол входа светового луча в воду и чем ниже расположен надводный предмет, тем более искаженным кажется он рыбе. При падении светового луча под углом 5-10°, особенно если водная поверхность неспокойна, рыба вообще перестает видеть предмет.

Лучи, идущие от глаза рыбы вне конуса в 97,6°, полностью отражаются от водной поверхности, и она представляется рыбе зеркальной. В ней отражаются дно, водные растения, плавающие рыбы.

С другой стороны, особенности преломления лучей позволяют рыбе видеть как бы скрытые предметы. Представим себе водоем с крутым обрывистым берегом. Сидящий на берегу человек не увидит рыбу - она скрыта береговым выступом, а рыба увидит человека.

Фантастически выглядят полупогруженные в воду предметы. Вот как, по словам Л. Я. Перельмана, должен представляться рыбам человек, находящийся по грудь в воде: «Для них мы, идя по мелководью, раздваиваемся, превращаемся в два существа: верхнее - безногое, нижнее- безголовое с четырьмя ногами! Когда мы удаляемся от подводного наблюдателя, верхняя половина нашего тела все сильнее сжимается в нижней части; на некотором расстоянии почти все надводное туловище пропадает,- останется лишь одна свободно реющая голова».

Даже опустившись под воду, человеку трудно проверить, как видят рыбы. Невооруженным глазом он вообще ничего четко не увидит, а наблюдая через застекленную маску или из окна подводной лодки, увидит все в искаженном виде. Ведь в этих случаях между глазом человека и водой будет еще и воздух, который обязательно изменит ход световых лучей.

Как видят рыбы предметы, расположенные вне воды, удалось проверить подводной съемкой. С помощью особой фотоаппаратуры были получены снимки, которые полностью подтвердили высказанные выше соображения. Представление о том, каким кажется надводный мир подводным наблюдателям, можно составить, опустив под воду зеркало. При определенном наклоне мы увидим в нем отражение надводных предметов.

Особенности строения глаза рыб, так же как и других органов, зависят прежде всего от условий обитания и образа их жизни.

Зорче других - дневные хищные рыбы: , . Это и понятно: они обнаруживают добычу, главным образом, зрением. Хорошо видят рыбы, питающиеся планктоном и донными организмами. У них зрение тоже имеет первостепенное значение для отыскивания добычи.

       

Оптические свойства водной среды таковы, что не позволяют видеть находящиеся в ней предметы на больших расстояниях. Соответственно этому обстоятельству устроен и рыбий глаз. Он приспособлен хорошо видеть в воде лишь те предметы, которые находятся от него не далее 1-1,5 м. Таким образом, по природе своей рыбы близоруки.

Однако их близорукость в известной степени компенсируется возможностью видеть в нескольких направлениях одновременно но, причем в обширной зоне. Большинство наших рыб способно, не поворачивая головы, видеть каждым глазом предметы в секторах до 150? по вертикали и до 170? - по горизонтали.

Такую обзорность в воде обеспечивают и строение глаз, и их размещение. Глаза рыбы не имеют век и никогда не закрываются. Снабжены круглыми хрусталиками, воспринимающими наибольшее количество световых лучей с разных направлений.

Расположены глаза на голове рыбы в виде небольших возвышений (выпуклостей) над поверхностью тела, что позволяет воспринимать не только прямые, но и косые лучи (спереди, сзади, снизу, сверху и т. д.).

Когда рыба хочет тщательнее рассмотреть предмет, она вынуждена развернуться так, чтобы этот предмет оказался у нее впереди. Дело в том, что прямо впереди рыбы есть узкое конусообразное пространство, в котором она видит сразу двумя глазами.

Несколько иначе видит рыба предметы, находящиеся над водой. По закону преломления световых лучей она в состоянии воспринять только те предметы, которые находятся над ее головой в пределах конуса в 97?. Так что рыболова, сидящего в лодке или удящего в забродку, особенно если поверхность водоема неспокойна, рыба видеть издали не может.

Опыты ученых-ихтиологов показали, что рыба хорошо различает цвет и даже форму предметов. Именно этой способностью объясняется, почему при ловле спиннингом она явно предпочитает один вид блесен другому. Подтверждается умение рыбы различать цвета и тем, что она может изменять окраску в зависимости от цвета грунта (мимикрия). Так, окунь и плотва, обитающие на светлом песчаном дне, имеют более светлую окраску, чем те, которые держатся на торфяном дне. Окунь, выловленный в густых зарослях травы, всегда имеет более темную окраску, чем тот, что выловлен на каменистом перекате.

Наукой доказано также, что у разных пород рыб различна острота зрения. Например, у хищников, вынужденных выслеживать и преследовать свою добычу, зрение лучше: в прозрачной воде они могут видеть предмет на расстоянии 10-12 метров. У типично стайных рыб оно довольно слабое, менее развита у них и способность различать цвет.

В мутной воде и при слабой освещенности большинство рыб видят хуже, но некоторым (лещ, судак, сом и налим) темнота не является большой помехой: в сетчатке их глаз есть особые светочувствительные элементы, способные воспринимать слабые световые лучи.


Органы зрения рыб устроены в основном так же, как у других позвоночных. Сходен с остальными позвоночными у них и механизм восприятия зрительных ощущений: свет проходит в глаз через прозрачную роговицу, далее зрачок – отверстие в радужной оболочке – пропускает его на хрусталик, а хрусталик передает фокусирует свет на внутреннюю стенку глаза сетчатку, где и происходит его непосредственное восприятие. Сетчатка состоит из светочувствительных (фоторецепторные), нервных, а также опорных клеток.

Светочувствительные клетки располагаются со стороны пигментной оболочки. В их отростках, имеющих форму палочек и колбочек, имеется светочувствительный пигмент. Количество этих фоторецепторных клеток очень велико – на 1 мм 2 сетчатки у карпа их насчитывается 50 тыс. (у кальмара – 162 тыс., паука – 16 тыс., человека – 400 тыс., совы – 680 тыс.). Посредством сложной системы контактов конечных разветвлений чувствующих клеток и дендритов нервных клеток световые раздражения поступают в зрительный нерв.

Колбочки при ярком свете воспринимают детали предметов и цвет. Палочки воспринимают слабый свет, но детального изображения создать не могут.

Положение и взаимодействие клеток пигментной оболочки, палочек и колбочек меняются в зависимости от освещенности. На свету пигментные клетки расширяются и прикрывают находящиеся около них палочки; колбочки подтягиваются к ядрам клеток и таким образом передвигаются к свету. В темноте к ядрам подтягиваются палочки (и оказываются ближе к поверхности); колбочки приближаются к пигментному слою, а сократившиеся в темноте пигментные клетки прикрывают их.

Количество рецепторов разного рода зависит от образа жизни рыб. У дневных рыб в сетчатке превалируют колбочки, у сумеречных и ночных – палочки: у налима палочек в 14 раз больше, чем у щуки. У глубоководных рыб, живущих в темноте глубин, колбочек нет, а палочки становятся больше и количество их резко увеличивается – до 25 млн/мм 2 сетчатки; вероятность улавливания даже слабого света возрастает. Большая часть рыб различает цвета, что подтверждается возможностью выработки у них условных рефлексов на определённый цвет – синий, зеленый, красный, жёлтый, голубой.

Некоторые отступления от общей схемы строения глаза рыбы связаны с особенностями жизни в воде. Глаз рыбы эллипсовидный. В числе других он имеет серебристую оболочку (между сосудистой и белковой), богатую кристалликами гуанина, которая придает глазу зеленовато-золотистый блеск.

Роговица почти плоская (а не выпуклая), хрусталик шаровидный (а не двояковыпуклый) – это расширяет поле зрения. Отверстие в радужной оболочке – зрачок – может изменять диаметр только в небольших пределах. Век у рыб, как правило, нет. Лишь акулы имеют мигательную перепонку, закрывающую глаз как занавеска, и некоторые сельди и кефали – жировое веко – прозрачную пленку, закрывающую часть глаза.

Расположение глаз по бокам головы (у большинства видов) является причиной того, что рыбы обладают в основном монокулярным зрением, а способность к бинокулярному зрению весьма ограничена. Шаровидность хрусталика и перемещение его вперед к роговице обеспечивает широту поля зрения: свет в глаз попадает со всех сторон. Угол зрения по вертикали составляет 150°, по горизонтали– 168–170°. Но вместе с тем шаровидность хрусталика обусловливает близорукость рыб. Дальность их зрения ограничена и колеблется в связи с мутностью воды от нескольких сантиметров до нескольких десятков метров.

Видение на дальние расстояния становится возможным благодаря тому, что хрусталик может быть оттянут специальной мышцей–серповидным отростком, идущим от сосудистой оболочки дна глазного бокала.

При помощи зрения рыбы ориентируются и относительно предметов, находящихся на земле. Улучшение зрения в темноте достигается наличием отражательного слоя (тапетум) – кристалликов гуанина, подстилаемых пигментом. Этот слой не пропускает свет к лежащим позади сетчатки тканям, а отражает его и возвращает вторично на сетчатку. Так увеличивается возможность рецепторов использовать свет, попавший в глаз.

В связи с условиями обитания глаза рыб могут сильно видоизменяться. У пещерных или абиссальных (глубоководных) форм глаза могут редуцироваться и даже исчезать. Некоторые же глубоководные рыбы, наоборот, имеют огромные глаза, позволяющие улавливать совсем слабые следы света, или телескопические глаза, собирающие линзы которых рыба может поставить параллельно и обрести бинокулярное зрение. Глаза некоторых угрей и личинок ряда тропических рыб вынесены вперед на длинных выростах (стебельчатые глаза).

Необычна модификация глаз у четырехглазки из Центральной и Южной Америки. Ее глаза помещаются на верху головы, каждый из них разделен перегородкой на две самостоятельные части: верхней рыба видит в воздухе, нижней– в воде. В воздушной среде могут функционировать глаза рыб, выползающих на берег или деревья.

Роль зрения как источника информации из внешнего мира для большинства рыб очень велика: при ориентации во время движения, при отыскивании и захвате пищи, при сохранении стаи, в нерестовый период (восприятие оборонительных и агрессивных поз и движений самцами-соперниками, а между особями разных полов – брачного наряда и нерестового “церемониала”), в отношениях жертва –хищник и т. д.

Способность рыб воспринимать свет издавна использовалась в рыболовстве (лов рыбы на свет факела, костра и т. д.).

Известно, что рыбы разных видов неодинаково реагируют на свет разной интенсивности и разной длины волны, т. е. разного цвета. Так, яркий искусственный свет привлекает одних рыб (каспийская килька, сайра, ставрида, скумбрия и др.) и отпугивает других (кефаль, минога, угорь и т. д.). Так же избирательно относятся разные виды к разным цветам и разным источникам света – надводным и подводным. Все это положено в основу организации промышленного лова рыбы на электросвет (так ловят кильку, сайру и других рыб).




Copyright © 2024 Спортивный портал - Anavex.